Performance of Evacuated Tube Solar Collector Using Water-based Titanium Oxide Nanofluid
نویسندگان
چکیده
Experiments are undertaken to determine the efficiency of an evacuated tube solar collector using water-based Titanium Oxide (TiO2) nanofluid at the Pekan Campus (3 ̊32’ N, 103 ̊25’ E), Faculty of Mechanical Engineering, University Malaysia Pahang, for the conversion of solar thermal energy. Malaysia lies in the equatorial zone with an average daily solar insolation of more than 900 W/m2, which can reach a maximum of 1200 W/m2 for most of the year. Traditionally water is pumped through the collector at an optimum flow rate, for the extraction of solar thermal energy. If the outlet temperature of the water is high, further circulation of the water through the collector is useless. This is due to the low thermal conductivity of water of 0.6 W/m.K compared to metals which is many orders higher. Hence it is necessary to reduce the surface temperature either by pumping water at a higher flow rate or by enhancing the fluid’s properties by the dispersion of nanoparticles. Pumping water at higher flow rates is not advantageous as the overall efficiency of the system is lowered. Liquids in which nanosized particles of metal or their oxides are dispersed in a base liquid such as water are known as 'Nanofluids'. This results in higher values of thermal conductivity compared to the base liquid. The thermal conductivity increases with the concentration and temperature of the nanofluid. The increase in thermal conductivity with temperature is advantageous for application in collectors as the solar insolation varies throughout the day, with a minimum in the morning reaching a maximum at 2.00p.m and reducing thereafter. The efficiency of the collector estimated using a TiO2 nanofluid of 0.3% concentration is about 0.73, compared to water which is about 0.58. The efficiency is enhanced by 16.7% maximum with 30–50nm sized TiO2 nanoparticles dispersed in the water, compared to the system working solely with water. The flow rate is fixed at 2.7 liters per minute for both liquids.
منابع مشابه
Comparative performance assessment of flat plate and evacuated tube collectors for domestic water heating systems in Kerman, Iran
This study represents a year-round energy performance of two solar water heating (SWH) systems with a 4m2 flat plate collector (FPC) and an evacuated tube collector (ETC) operating under the same weather conditions. The energy performance of the two considered systems was compared on a monthly and yearly basis. The obtained results showed that for an annual total solar insolation of ...
متن کاملModeling and thermal parametric analysis of U-pipe evacuated tube solar collector for four different climates in Iran
In this study, thermal performance of the collector with analytic and quasi-dynamic method is evaluated based on energy balance equations for each part of the U-pipe evacuated tube solar collector. Using this approach, effect of different parameters such as tube size, overall heat loss coefficient, absorber tube absorptivity, mass flow rate and air layer thermal resistance on thermal performanc...
متن کاملExperimental Investigation of the Thermal Performance of Vacuum Tube Solar Collectors (VTSC) Using Alumina Nanofluids
The enhancement of the thermal performance of Vacuum Tube Solar Collectors (VTSC) was studied by using alumina nanofluid as working fluid. VTSC is a simple and commonly utilized type of collector. This study established the heat transfer experimental model of all glass VTSCs used in a forced-circulation solar water heating system using alumina nanofluid as base fluid. Al2O3 (with an average par...
متن کاملAn Experimental Study on Evacuated Tube Solar Collector using Therminol D-12 as Heat Transfer Fluid Coupled with Parabolic Trough
An evacuated tube solar collector using therminol D-12 as heat transfer fluid coupled with parabolic trough is studied in this paper. An experimental set-up was constructed to study the performance of evacuated tube collector with therminol D-12 as heat transfer fluid. The parabolic trough is coupled with evacuated tube collector for better performance. In the traditional solar collectors water...
متن کاملAn experimental investigation on the performance of a symmetric conical solar collector using SiO2/water nanofluid
One of the effective methods to improve the thermal efficiency of solar collectors is using nanofluids as the coolant. The present study experimentally investigated the effect of SiO2/water nanofluid with 1% mass fraction on the performance of a symmetric collector, i.e. conical solar collector. The conical solar collector with 1 m2 area and normal to the earth was tested in Ahvaz, a city in th...
متن کامل